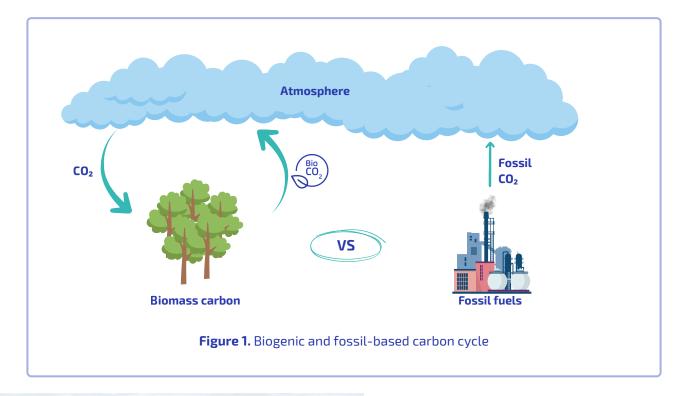
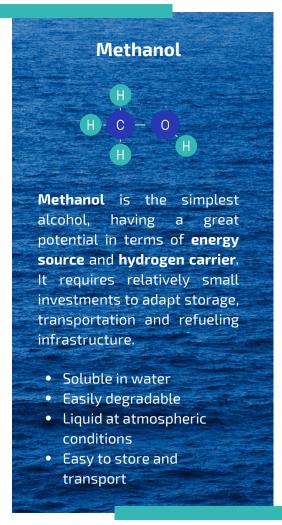


The Biogenic Solution for Maritime Decarbonization


One of the main commitments of the M^2ARE project is to **map available biogenic CO_2 sources** to produce methanol as a sustainable alternative to fossil fuels for maritime fuel production. Different factors are fundamental to make a detailed assessment of the biogenic CO_2 sources such as indications on the **points of emission** within the plant, **geographical distribution**, indicative **stream composition/impurities** and the **potential seasonality**.

Biogenic CO₂: A valuable and sustainable alternative to fossil CO₂

The maritime shipping industry, a backbone of global trade, is also a significant contributor to climate change, with the IMO (International Maritime Organization) attributing approximately 3% of total global CO₂ emissions to this sector, which overwhelmingly relies on fossil fuels for propulsion and **power generation**. Achieving ambitious decarbonization targets necessitates a swift pivot towards Sustainable Marine Fuels (SMFs) such as methanol, ammonia, liquefied natural gas (LNG), hydrogen, and various biofuels. Among these, methanol is emerging as a critical low-carbon pathway; however, its sustainability hinges on its production from non-fossil carbon sources. The EU Horizon project M²ARE is strategically positioned to aim to accelerate this transition by focusing, among others, on the mapping and characterization of **biogenic CO₂ streams**. This biogenic CO₂, sourced from the decomposition or processing of biomass (e.g., agricultural waste, forestry residues), is distinct from fossil CO₂ because it is part of the natural shortterm carbon cycle, having been recently captured from the atmosphere by plants. By capturing and utilizing this carbon, combined with renewable **hydrogen** (H₂), M²ARE facilitates the production of low-carbon methanol, effectively transforming an existing emission source into a renewable carbon feedstock for the shipping industry, thereby helping to **close the loop** on sustainable fuel production.


Conversion process of biomass

Bio-CO₂ is a by-product deriving from **several processes** of **biomass conversion**. This carbon source often remains unutilized, and it origins from three main biomass conversion technologies:

- Combustion (main CO₂ emitting process);
- Digestion (production of biogas and digestate);
- **Fermentation** (production of products like bioethanol).

Potential impurities contained in the bio-CO₂ feedstock

A previous assessment on the different biomass feedstocks is fundamental to have an overview of the compounds that could **potentially interfere** with the **catalyst** during the methanol synthesis process, leading to **catalyst poisoning** and deactivation.

CO₂ capture and separation techniques

Different states in which CO_2 can be transported include: gas, liquid, dense form and supercritical fluid. Each with their own advantages and disadvantages. On-site storage of CO₂ from industrial off-gases typically involves gas holders. The CO2 is stored in a relatively pure state, but thorough cleaning of the off-gas stream is essential to protect the catalysts used in methanol synthesis. The choice of CO₂ transportation method, whether by pipeline, maritime, or road, depends on factors like volume, cost, and geography. While road transport is suitable for smaller volumes over short distances, pipelines and maritime transport are more feasible for large volumes exceeding one million tons annually. CO2 can be transported as a liquid via trucks, trains, or ships, or as a supercritical fluid through pipelines.

CO₂ storage and transportation

Three primary technological approaches are currently employed to capture carbon dioxide (CO₂) from industrial and energyrelated sources: post-combustion, pre-combustion, and oxy**fuel combustion**. The choice among these three methods is not universal, but rather depends heavily on the specific context of the industrial facility. Key determinants in selecting the most suitable CO₂ capture technology include the required **purity level** of the captured CO₂ product (which impacts its transport and eventual utilization or storage) and the thermodynamic **conditions** and composition of the original flue or gas stream. For instance, post-combustion capture is often retrofit onto existing power plants, while Pre-combustion is typically integrated into new facilities that use processes like gasification.

in M²ARE Project

M²ARE Project

M²ARE.eu

info@M2ARE.eu

The information contained in this factsheet is part of the results obtained in the context of the M²ARE project. Further information can be found in the full paper available at this link.

3

Coordinator:

Partners:

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement n. 101136080. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.