

Mapping and categorization of different bio-CO₂ sectors

The M²ARE project is developing a **low-cost**, **low-carbon methanol** fuel for the shipping industry, synthesized from **biogenic CO₂** and **renewable H₂**. This fuel is essential for achieving a reduction in maritime CO₂ emissions. A foundational step in scaling this technology is securing a reliable, sustainable carbon feedstock. This factsheet presents the findings of the M²ARE project on the **categorization** and **mapping of available bio-CO₂ streams** across Europe. It assesses the quality and quantity of CO₂ from various biomass sources—such as biogas, bioethanol, and pulp & paper—to qualify them as feedstocks for the next-generation Maritime Methanol process.

Different factors related to bio-CO₂ streams

Bio-CO₂ emissions points in the plant

The precise location of emissions can **vary significantly** within different processing plants.

CO₂ concentration

The concentration of in the biogenic stream is **heavily dependent** on the **composition** of the feedstock used.

Seasonality

The majority of feedstocks are subject to **seasonal availability**, leading to **fluctuations** in their supply throughout the year.

Current uses of the bio-CO₂ stream

The $bio-CO_2$ can either be **stored**, already be **used**, or **released** into the atmosphere.

Geographic distribution

The bio-CO₂ stream may be **geographically scattered** across various locations complicating the Maritime Methanol value chain

Impurities and other compounds

The bio-CO₂ streams often contain various impurities and other compounds that may require removal to avoid damage to the methanol synthesis catalyst.

Total bio-CO₂ sector emissions

This is an important indicator for determining which sector is **most promising** to provide the carbon feedstock to the methanol synthesis

Investigated CO₂ sources

Biomass combustion

Biomass power plants create **electricity by burning various materials** like wood and farm waste. The biogenic CO_2 is captured from the exhaust gas, where it is a small to moderate part of the mix. **Operations can change depending on the season**, as the availability and price of fuel fluctuate, or if the plant also provides heat, which is needed more in the winter. **These plants vary greatly in size**, from small to very large polluters, and the total estimated CO_2 emissions in the EU are substantial.

Pulp and paper

Making pulp, primarily with the Kraft method, creates large, concentrated sources of emissions, and the biggest CO₂ source is the recovery boiler, where CO₂ makes up a noticeable fraction of the off-gas, while the lime kiln releases an even greater concentration of CO₂, coming from both fossil and biogenic sources. Unlike biomass, the seasons don't significantly impact how these plants operate but pulp and paper factories are considered large CO₂ polluters: the total biogenic CO₂ emissions for this EU sector were very high in 2022.

Biogas

Biogas is produced through a natural process called anaerobic digestion and is a mixture of methane and a large portion of CO₂. After the gas is "upgraded" to methane, the CO₂ is mostly released into the air without being used. Seasonality has little effect on this operation and although there are many biogas plants across Europe, each one releases a small amount of CO2. The total biogenic CO₂ released across Europe is moderate.

Bioethanol

Bioethanol is made through fermentation, and the resulting biogenic CO₂ is very pure, making it easy to capture and reuse. Because it is so pure, this CO₂ stream is often used again within the same facility or **sold** to other food and beverage companies. Furthermore, bioethanol plants are spread out geographically, and each plant has small emissions. Total biogenic CO2 emissions were low in 2023.

Food and Beverage

Fermentation processes, like those used to make wine and beer, create very pure biogenic CO2 and like the bioethanol sector, this pure CO_2 is often reused within the company or sold. Wine fermentation is heavily impacted by the seasonal harvest of grapes, and this sector accounts for a relatively small part of the total biogenic CO2 emissions in the EU. Total biogenic CO2 emissions were quite low in 2023.

in M²ARE Project

M²ARE Project

M²ARE.eu

info@M²ARE.eu

The information contained in this factsheet is part of the results obtained in the context of the M²ARE project. Further information can be found in the full paper available at this link.

Coordinator:

Partners:

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement n. 101136080. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or CINEA. Neither the European Union nor the granting authority can be held responsible for them.